3.2

Focus on...

After this lesson, you will be able to...

- model the Pythagorean relationship
- describe how the Pythagorean relationship applies to right triangles

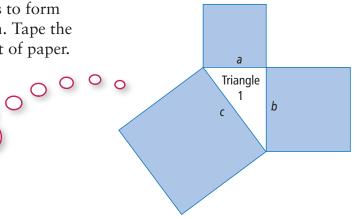
Exploring the Pythagorean Relationship

Right triangles are found in art, construction, and many other objects. The sail for this sailboat is a right triangle. What makes this shape so special? You will explore some important properties of right triangles in this lesson.

Explore the Math

What is a relationship that applies to right triangles?

1. From a piece of centimetre grid paper, cut out three squares with the following dimensions:

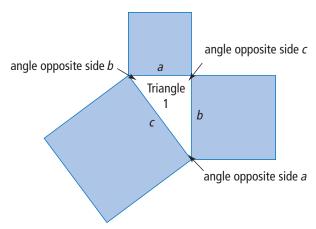

 $6 \text{ cm} \times 6 \text{ cm}$

 $8 \text{ cm} \times 8 \text{ cm}$

 $10 \text{ cm} \times 10 \text{ cm}$

2. Arrange the squares to form Triangle 1 as shown. Tape the squares onto a sheet of paper. Label Triangle 1.

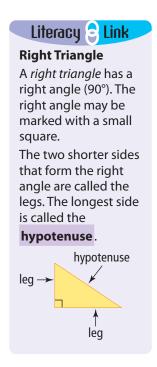
The length of side a is 6 cm, side b is 8 cm, and side c is 10 cm.


Materials

- centimetre grid paper
- scissors
- transparent tape
- protractor

3. Copy the table below into your notebook.

	Side	Side Length (cm)	Angle Opposite the Side (°)	Area of Square (cm²)	Right Triangle? (yes/no)
	а	6	37		
Triangle 1	b	8			
	С	10			
Triangle 2	а	5			
	b	7			
	С	10			
Triangle 3	а	5		25	
	b			144	
	С			169	


4. Measure the angle opposite each side of Triangle 1 with a protractor.

- **5.** In your table, record the angle measures to the nearest degree.
- **6.** Complete the rest of the table for Triangle 1.
- **7.** Repeat the above steps for Triangles 2 and 3 in the table.

Reflect on Your Findings

- **8. a)** Which triangles are right triangles? How do you know?
 - **b)** For each right triangle, write an addition statement showing the relationship between the areas of the three squares.
 - c) For each right triangle, describe in words the relationship between the side lengths of the triangle.

hypotenuse

- the longest side of a right triangle
- the side opposite the right angle