"They'll Need It for High School"

Chris Hunter K-12 Numeracy Helping Teacher School District No. 36 (Surrey) Surrey, BC, Canada reflectionsinthewhy.wordpress.com @ChrisHunter36 NCTM Boston April 17, 2015

Links & Resources

Related to Readiness

Christopher Danielson · https://christopherdanielson.wordpress.com/2013/04/21/the-goods-nctmdenver/

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2014/01/30/pythagorean-mistakes/

 $\label{lem:composition} Chris Hunter \cdot \underline{\text{https://reflectionsinthewhy.wordpress.com/2014/04/21/theyll-need-it-for-high-school-part-1/Chris Hunter} \cdot \underline{\text{https://reflectionsinthewhy.wordpress.com/2014/05/15/theyll-need-it-for-high-school-part-2/Chris Hunter} \cdot \underline{\text{https://reflectionsinthewhy.wordpress.com/2015/03/02/theyll-need-it-for-high-school-part-3/Chris Hunter} \cdot \underline{\text{https://reflectionsinthewhy.wordpress.com/2015/03/Chris Hunter-high-school-part-3/Chris Hunter-high-school-part-3/$

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2015/03/23/theyll-need-it-for-high-school-part-4/

Math Tasks

 $Christopher\ Danielson \cdot \underline{http://talkingmathwithkids.com/2015/01/07/building-a-better-shapes-book/}$

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2015/03/11/which-one-doesnt-belong/

Mary Bourassa · http://marybourassa.blogspot.ca/2015/03/which-one-doesnt-belong-for-calculus.html

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2014/02/11/pythagorean-exploration/

Brian Marks · http://www.yummymath.com/2012/watson-save/

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2013/11/06/sinusoidal-sort/

Peter Liljedahl · http://www.peterliljedahl.com/teachers/numeracy-tasks

Chris Hunter · https://reflectionsinthewhy.wordpress.com/2015/03/29/fair-share-pair/

NCTM · http://figurethis.nctm.org/challenges/c25/challenge.htm
Andrew Stadel · http://www.estimation180.com/day-4.html
Andrew Stadel · http://www.estimation180.com/day-4.html

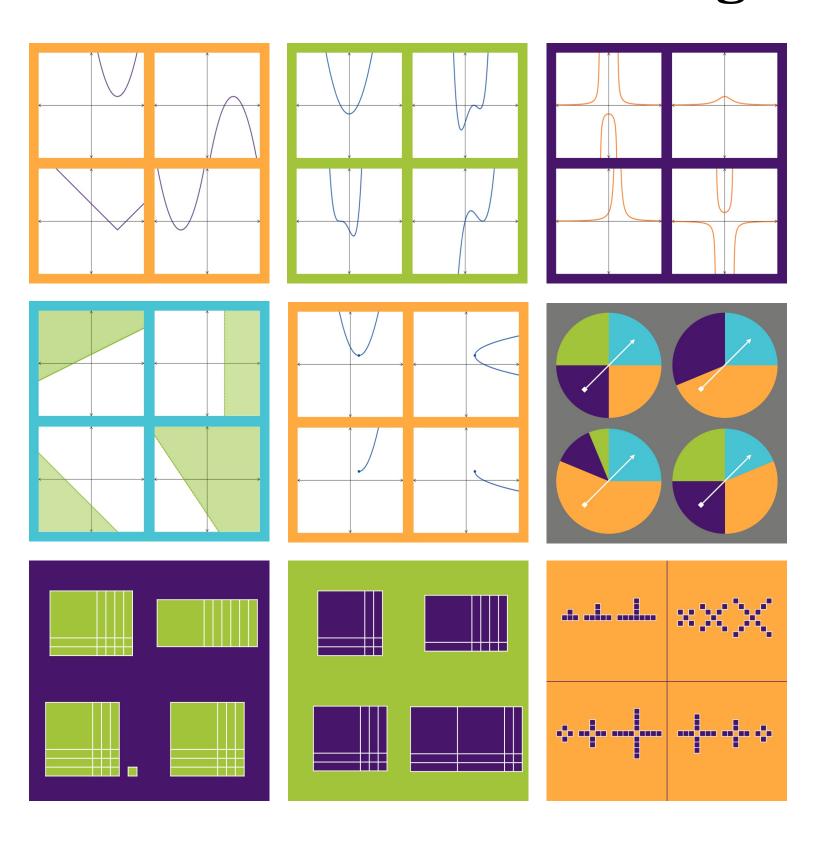
NCTM Journal Articles

Boaler, Jo. 2014. "Research suggests that timed tests cause math anxiety." *Teaching Children Mathematics*. 20 (8): 469–474.

Danielson, Christopher. 2014. "They'll Need It for Calculus." *Mathematics Teaching in the Middle School*. 20 (5): 260–265

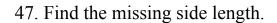
Otten, Samuel. 2011. "Cornered by the Real World: A Defense of Mathematics." *Mathematics Teacher* 105 (1): 20–25.

Professional Learning Resources


Small, Marian. 2010. *Big Ideas from Dr. Small: Creating a Comfort Zone for Teaching Mathematics Grades K—* 3. Toronto: Nelson Education.

Small, Marian. 2009. *Big Ideas from Dr. Small: Creating a Comfort Zone for Teaching Mathematics Grades 4–* 8. Toronto: Nelson Education.

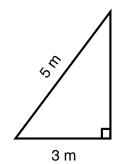
Small, Marian, and Lin, Amy. 2011. *Big Ideas from Dr. Small: Creating a Comfort Zone for Teaching Mathematics Grades* 9–12. Toronto: Nelson Education.


Swan, Malcolm. 2005. *Improving Learning in Mathematics: Challenges and Strategies*. Department for Education and Skills Standards Unit.

Which One Doesn't Belong?

wodb.ca

PYTHAGOREAN MISTAKES

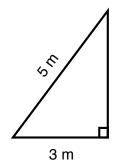


$$3^{\lambda} + 5^{\lambda} = X^{\lambda}$$

$$9 + \lambda 5 = X^{\lambda}$$

$$34 = X^{\lambda}$$

$$X = 5.83 \text{ m}$$

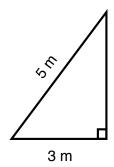


$$X^{\lambda} + 3^{\lambda} = 5^{\lambda}$$

$$X^{\lambda} + 6 = \lambda 5$$

$$X^{\lambda} = 19$$

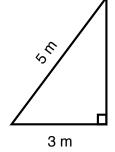
$$X = 4.36 \text{ m}$$

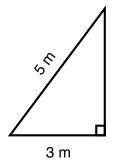

47. Find the missing side length.

$$X^{\lambda} = 5^{\lambda} - 3^{\lambda}$$

$$X^{\lambda} = \lambda 5 - 9$$

$$X^{\lambda} = 16$$


$$X = 8 \text{ m}$$


47. Find the missing side length.

47. Find the missing side length.

isosalees

47. Find the missing side length.

PYTHAGOREAN MISTAKES

What math mistake did each student make? What are some implications for our work?

How Are They The Same?

Addition	Subtraction
231+145	$1\frac{1}{4} - \frac{1}{2}$
2.31 + 1.45	5x-2x
$(2x^2 + 3x + 1) + (x^2 + 4x + 5)$	$5\sqrt{2}-\sqrt{8}$
Multiplication	Division
Multiplication 23×14	Division $6 \div 3$

How Are They The Same?

Evaluate, or simplify, each set of expressions

Make as many connections as you can: conceptually & procedurally pictorially & symbolically

Sharing Pairs

Three friends, Chris, Jeff, and Marc, go shopping for shoes. The store is having a *buy two pairs, get one pair free* sale.

Chris opts for a pair of high tops for \$75, Jeff picks out a pair of low tops for \$60, and Marc settles on a pair of slip-ons for \$45.

The cashier rings them up; the bill is \$135.

How much should each friend pay? Try to find the fairest way possible. Justify your reasoning.