So Part 2 was supposed to be about the big ideas in K-7 mathematics that students will need for high school. But that’ll have to wait for Part 3. Instead, more on times tables.
Three oft-used arguments for the importance of memorizing times tables:
- When learning higher levels of math, there just isn’t time to use calculators or strategies to determine basic facts.
- Besides, thinking taxes working memory which means by the time you’ve worked out the first part of the question, you will have forgotten the… Where am I?
- Because factoring.
1 & 2 are gospel. Well, so is 3; nevertheless, it’s the focus of this post. I have a couple of thoughts on times tables and factoring trinomials.
The reason some students struggle with factoring trinomials is not because they haven’t memorized products to 10 × 10. I can get away with this if we’re talkin’ Pythagoras. But factoring?! I mean, that’s all it is, right? To factor x² + 7x + 10, you just have to ask yourself, “What two numbers multiply to 10 and add to 7?”
HS math teachers, try this: give your students a quiz on factoring. Include both x² + 10x + 24 and x² + 25x + 24. Get back to me. For extra credit (yours, not theirs), throw x² + 6x + 5 in there. If your students are anything like mine, I bet x² + 25x + 24 gives them at least as much difficulty as x² + 10x + 24. What does this mean for these students? More practice multiplying by one?!
Of course, 1 × 24 falls outside most times tables. Recall of products to 10 × 10 gets us the factors of x² + bx + 60 – if b = 16. But x² + 17x + 60, x² + 19x + 60, x² + 23x + 60, and x² + 32x + 60 are fair game, right? Try c = 48. Or 72. Or 96. Or 100. What role does memorizing times tables play? What role does being flexible with numbers play?
My point, I think, is that these are different, albeit related, skills. In other words, the “it” they’ll need for factoring (trinomials) is factoring (numbers). And number sense. This has some implications for K-7: not necessarily more “What’s 4 × 6?” but more “A rectangle has an area of about 24 square units. What could its length and width be?” or even “The answer is 24. What’s the question?”; not thinking digits/standard algorithm but thinking – and talking! – factors/mental math strategies, e.g. 16 × 25 = (4 × 4) × 25 = 4 × (4 × 25) = 4 × 100 = 400 (via Sherry Parrish).

nothing to do with post but @k8nowak says put pictures in posts
Say you’re still asking, “How am I supposed to teach them factoring when they don’t even know their multiplication facts?” When I introduced polynomial division in Math 10, some of my high school students didn’t even know long division. So I taught division of numbers and polynomials side-by-side, highlighting connections. Can the same miiindset (channeling my inner Leinwand) be applied to factoring trinomials and times tables?
And what about something like x² − 2x − 24? If that – asking yourself, “What two numbers multiply to -24 and add to -2?” – is all it is, why not factoring trinomials to teach multiplication (and addition) of integers?

